关于植物(第4/8页)科技狂人

重要通知:域名变更为m.bxuu.net请收藏

点叶之间的螺旋线绕茎周数,称为叶序周。不同种植物的叶序周可能不同,之间的叶数也可能不同。例如榆,叶序周为1(即绕茎1周),有2叶;桑,叶序周为1,有3叶;桃,叶序周为2,有5叶;梨,叶序周为3,有8叶;杏,叶序周为5,有13叶;松,叶序周为8,有21叶……用公式表示(绕茎的周数为分子,叶数为分母),分别为1/2,1/3,2/5,3/8,5/13,8/21,……这些是最常见的叶序公式,据估计大约有90%植物属于这类叶序,而它们全都是由斐波纳契数组成的。

    你如果观察向rì葵的花盘,会发现其种子排列组成了两组相嵌在一起的螺旋线,一是顺时针方向,一组是逆时针方向。再数数这些螺旋线的数目,虽然不同品种的向rì葵会有所不同,但是这两组螺旋线的数目一般是34和55、55和89或89和144,其中前一个数字是顺时针线数,后一个数字是逆时针线数,而每组数字都是斐波纳契数列中相邻的两个数。再看看菠萝、松果上的鳞片排列,虽然不像向rì葵花盘那么复杂,也存在类似的两组螺旋线,其数目通常是8和13。有时候这种螺旋线不是那么明显,需要仔细观察才会注意到,例如花菜。如果你拿一颗花菜认真研究一下,会发现花菜上的小花排列也形成了两组螺旋线,再数数螺旋线的数目,是不是也是相邻的两个斐波纳契数,例如顺时针5条,逆时针8条?掰下一朵小花下来再仔细观察,它实际上是由更小的小花组成的,而且也排列成了两条螺旋线,其数目也是相邻的两个斐波纳契数。

    为什么植物如此偏爱斐波纳契数?这和另一个更古老的、早在古希腊就被人们注意到甚至去崇拜它的另外一个“神秘”数字有关。假定有一个数φ,它有如下有趣的数学关系:

    φ^2-φ^1-φ^0=0

    即:φ^2-φ-1=0

    解这个方程,有两个解:

    (1+√5)/2=1.6180339887

    (1-√5)/2=-0.6180339887

    注意这两个数的小数部分是完全相同的。正数解(1.6180339887)被称为黄金数或黄金比率,通常用φ表示。这是一个无理数(小数无限不循环,没法用分数来表示),而且是最无理的无理数。同样是无理数,圆周率π用22/7,自然常数e用19/7,√2用7/5就可以很jīng确地近似表示出来,而φ则不可能用分母为个位数的分数做jīng确的有理近似。

    黄金数有一些奇妙的数学xìng质。它的倒数恰好等于它的小数部分,也即1/φ=φ-1,有时这个倒数也被称为黄金数、黄金比率。如果把一条直线AB用C点分割,让AB/AC=AC/CB,那么这个比等于黄金数,C点被称为黄金分割点。如果一个等腰三角形的顶角是36度,那么它的高与底线的比等于黄金数,这样的三角形称为黄金三角形。如果一个矩形的长宽比是黄金数,那么从这个矩形切割掉一个边长为其宽的正方形,剩下的小矩形的长宽比还是黄金数。这样的矩形称为黄金矩形,它可以用上述的方法无限切割下去,得到一个个越来越小的黄金矩形,而如果把这些黄金矩形的对角用弧线连接起来,则形成了一个对数曲线。常见的报纸、杂志、书、纸张、身份证、信用卡用的形状都接近于黄金矩形,据说这种形状让人看上去很舒服。的确,在我们的生活中,黄金数无处不在,建筑、艺术品、rì常用品在设计上都喜欢用到它,因为它让我们感到美与和谐。

    那么黄金数究竟和斐波纳契数有什么关系呢?根据上面的方程:

    φ^2-φ-1=0,

    可得:

    φ=1+1/φ

    =1+1/(1+1/φ)

    =

    =1+1/(1+1/(1+1/(1+)))

    根据上面的公式,你可以用计算器如此计算φ:输入1,取倒数,加1,和取倒数,加1,和取倒数,……,你会发现总和越来越接近φ。让我们用分数和小数来表示上面的逼近步骤:

    φ≈1

    φ≈1+1/1=2/1=2

    φ≈1+1/(1+1/1)=3/2=1.5

    φ≈1+1/(1+1/(1+1))=5/3=1.666667

    φ≈1+1/(1+1/(1+(1+1)))=8/5=1.6

    φ≈1+1/(1+1/(1+(1+(1+1))))=13/8=1.625

    φ≈1+1/(1+1/(1+(1+(1+(1+1)))))=21/13=1.615385

    φ≈1+1/(1+1/(1+(1+(1+(1+(1+1))))))=34/21=1.619048

    φ≈1+1/(1+1/(1+(1+(1+(1+(1+(1+1)))))))=55/34=1.617647

    φ≈1+1/(1+1/(1+(1+(1+(1+(1+(1+(1+1))))))))=89/55=1.618182

    发现了没有?以上分数的分子、分母都是相邻的斐波纳契数。原来相邻两个斐波纳契数的比近似等于φ,数目越大,则越接近,当无穷大时,其比就等于φ。斐波纳契数与黄金数是密切联系在一起的。植物喜爱斐波纳契数,实际上是喜爱黄金数。这是为什么呢?莫非冥冥之中有什么安排,是上帝想让世界充满了美与和谐?

    植物的枝条、叶子和花瓣有相同的起源,都是从茎尖的分生组织依次出芽、分化而来的。新芽生长的方向与前面一个芽的方向不同,旋转了一个固定的角度。如果要充分地利用生长空间,新芽的生长方向应该与旧芽离得尽可能的远。那么这个最佳角度是多少呢?我们可以把这个角度写成360°×n,其中0<n<1,由于左右各有一个角度是一样的(只是旋转的方向不同),例如n=0.4和n=0.6实际上结果相同,因此我们只需考虑0.5≤n<1的情况。如果新芽要与前一个旧芽离得尽量远,应长到其对侧,即n=0.5=1/2,但是这样的话第2个新芽与旧芽同方向,第3个新芽与第1个新芽同方向,……,也就是说,仅绕1周就出现了重叠,而且总共只有两个生长方向,中间的空间都浪费了。如果0.6=3/5呢?绕3周就出现重叠,而且总共也只有5个方向。事实上,如果n是个真分数p/q,则意味着绕p周就出现重叠,共有q个生长方向。

    显然,如果n是没法用分数表示的无理数,就会“有理”得多。选什么样的无理数呢?圆周率π、自然常数e和√2都不是很好的选择,因为它们的小数部分分别与1/7,5/7和2/5非常接近,也就是分别绕1,5和2周就出现重叠,分别总共只有7,7和5个方向。所以结论是,越是无理的无理数越好,越“有理”。我们在前面已经提到,最无理的无理数,就是黄金数φ≈1.618。也就是说,n的最佳值≈0.618,即新芽的最佳旋转角度大约是360°×0.6


本章未完,请点击【下一页】继续阅读》》